Advanced Search

عرض المشاركات

هنا يمكنك مشاهدة جميع المشاركات التى كتبها هذا العضو . لاحظ انه يمكنك فقط مشاهدة المشاركات التى كتبها فى الاقسام التى يسمح لك بدخولها فقط .


الرسائل - mohamedtalat

صفحات: [1]
1
منتدى علوم الأرض / NASA SCIENTISTS DISCOVER TENTH PLANET
« في: أغسطس 01, 2005, 08:33:59 مساءاً »
يَكتشفُ علماءُ ناسا كوكباً عاشراً


أي كوكب أكبر مِنْ بلوتو إكتشفَ في المناطقِ البعيدةِ
النظام الشمسي.

الكوكب إكتشفَ إستعمال منظارِ صموئيل Oschin في Palomar
مرصد قُرْب سان دياغو، كاليفورنيا، الإكتشاف أعلنَ اليوم مِن قِبل
العالم الكوكبي الدّكتور مايك براون لمعهد تكنولوجيا كاليفورنيا في
Pasadena، كاليفورنيا، التي بحثها جزئياً مموّل من قبل ناسا.

إنّ الكوكبَ a عضو مثالي مِنْ حزامِ Kuiper، لكن حجمَه المطلقَ في
العلاقة إلى الكواكبِ المعروفةِ التسعة تَعْنِ بأنّها يُمْكِنُ فقط أَنْ تُصنّفَ كa
الكوكب، براون قالَ. حالياً حوالي 97 مرةَ أبعد مِنْ الشمسِ مِنْ
الأرض، الكوكب الجسمُ الأبعدُ المعروفُ في النظام الشمسي، و
ثلث ألمع مِنْ أجسامِ حزامِ Kuiper.

"هو سَيَكُونُ مرئي مَع a منظار على الشهور الستّة التالية وحالياً
تقريباً مباشرة فوق في السماءِ الشرقيةِ المبكّرةِ، في البرجِ
Cetus، "قالَ براون، الذي جَعلَ الإكتشافَ مَع الزملاءِ تشاد Trujillo،
مرصد الجوزاءِ في Mauna Kea، هاواي، وديفيد Rabinowitz، يايل
الجامعة، ملجأ جديد، كون. ، في يناير/كانون الثاني 8.

براون، صوّرَ Trujillo وRabinowitz الكوكب الجديد أولاً ب
البوصة 48 صموئيل Oschin منظار في أكتوبر/تشرين الأول 31, 2003. على أية حال، الجسم كَانَ لذا
البعيدة بأنّ حركتها لَمْ تُكتَشفْ حتى أعادوا تحليل البياناتَ في
يناير/كانون الثّاني هذه السَنَةِ. في الشهور السبعة الأخيرة، العلماء كَانوا
دِراسَة الكوكبِ لتَحسين أوضاع تخمينِ حجمِه وحركاتِها.

"هو أكبرُ بالتأكيد مِنْ بلوتو، "قالَ براون، الذي أستاذ كوكبيُ
عِلْم الفلك.

العلماء يُمْكِنُ أَنْ يَستنتجوا حجمَ a جسم نظام شمسي بسطوعِه، فقط
كما واحد يُمْكِنُ أَنْ يَستنتجَ حجمَ a مصباح بعيد إذا واحد يَعْرفُ wattageه.
reflectance للكوكبِ لَمْ يُعْرَفُ لحد الآن. العلماء لا يَستطيعونَ إخْبار لحد الآن كَمْ
الضوء مِنْ الشمسِ منعكسةُ بعيداً، لكن كميةَ الضوءِ، الكوكب
يَعْكسُ يَضِعُ a يُنزّلُ حدّاً على حجمِه.

"حتى إذا عَكسَ 100 بالمائة مِنْ الضوءِ الذي يَصِلُه، هو ما زالَ يَكُونُ ك
الكبير كبلوتو، "يَقُولُ براون. "أنا أَقُولُ بأنّه من المحتمل واحد وa نِصْف الأوقاتِ التي الحجمِ
بلوتو، لَكنَّنا لَسنا متأكّدينَ لحد الآن الحجمِ النهائيِ.

"نحن 100 بالمائة واثقون بأنّ هذه الجسم الأول أكبر مِنْ بلوتو
وَجدَ أبداً في النظام الشمسي الخارجيِ، "براون أضافَ.

إنّ حجمَ الكوكبِ يُحدّدُ بإستعمال ملاحظاتِ ناسا فضاء Spitzer
المنظار، الذي أثبتَ قوّةَ شخصيته في دِراسَة حرارةِ خافتةِ،
الإغماء، أجسام بعيدة مثل أجسامِ حزامِ Kuiper. لأن Spitzer عاجزُ
لإكتِشاف الكوكبِ الجديدِ، القطر العامّ يَجِبُ أَنْ يَكُونَ أقل مِنْ 2,000 ميلِ،
قالَ براون.

أي اسم للكوكبِ الجديدِ إقترحَ مِن قِبل المكتشفين إلى
الإتحاد الفلكي الدولي، وهم يَنتظرونَ قرارَ هذا
جسم قبل إعْلان الاسمِ.

للمزيد من المعلومات يَرى:

http://www.gps.caltech.edu/~mbrown

للمعلوماتِ حول ناسا والوكالة تُبرمجانِ على الشبكة، زيارة:

http://www.nasa.gov/home/index


[/ أنا] [أنا] [بي] [/ بي] [بي]

2
منتدى علوم الأرض / NASA SCIENTISTS DISCOVER TENTH PLANET
« في: أغسطس 01, 2005, 08:26:09 مساءاً »
NASA SCIENTISTS DISCOVER TENTH PLANET


A planet larger than Pluto has been discovered in the outlying regions of
the solar system.

The planet was discovered using the Samuel Oschin Telescope at Palomar
Observatory near San Diego, Calif. The discovery was announced today by
planetary scientist Dr. Mike Brown of the California Institute of Technology in
Pasadena, Calif., whose research is partly funded by NASA.

The planet is a typical member of the Kuiper belt, but its sheer size in
relation to the nine known planets means that it can only be classified as a
planet, Brown said. Currently about 97 times further from the sun than the
Earth, the planet is the farthest-known object in the solar system, and the
third brightest of the Kuiper belt objects.

"It will be visible with a telescope over the next six months and is currently
almost directly overhead in the early-morning eastern sky, in the constellation
Cetus," said Brown, who made the discovery with colleagues Chad Trujillo, of the
Gemini Observatory in Mauna Kea, Hawaii, and David Rabinowitz, of Yale
University, New Haven, Conn., on January 8.

Brown, Trujillo and Rabinowitz first photographed the new planet with the
48-inch Samuel Oschin Telescope on October 31, 2003. However, the object was so
far away that its motion was not detected until they reanalyzed the data in
January of this year. In the last seven months, the scientists have been
studying the planet to better estimate its size and its motions.

"It's definitely bigger than Pluto," said Brown, who is a professor of planetary
astronomy.

Scientists can infer the size of a solar system object by its brightness, just
as one can infer the size of a faraway light bulb if one knows its wattage. The
reflectance of the planet is not yet known. Scientists can not yet tell how much
light from the sun is reflected away, but the amount of light the planet
reflects puts a lower limit on its size.

"Even if it reflected 100 percent of the light reaching it, it would still be as
big as Pluto," says Brown. "I'd say it's probably one and a half times the size
of Pluto, but we're not sure yet of the final size.

"We are 100 percent confident that this is the first object bigger than Pluto
ever found in the outer solar system," Brown added.

The size of the planet is limited by observations using NASA's Spitzer Space
Telescope, which has already proved its mettle in studying the heat of dim,
faint, faraway objects such as the Kuiper-belt bodies. Because Spitzer is unable
to detect the new planet, the overall diameter must be less than 2,000 miles,
said Brown.

A name for the new planet has been proposed by the discoverers to the
International Astronomical Union, and they are awaiting the decision of this
body before announcing the name.

For more information see:

http://www.gps.caltech.edu/~mbrown

For information about NASA and agency programs on the Web, visit:

http://www.nasa.gov/home/index


[/I]

3
منتدى علوم الأرض / Measuring Earthquakes
« في: يوليو 21, 2005, 10:40:27 مساءاً »
قياس الزلازل

إنّ الإهتزازاتَ أنتجتْ بالزلازلِ مُكتَشَفة، سجّلَ، وتَدْعو مُقاسة بالآلاتِ seismographs. الخَطّ المتعرّج جَعلَ مِن قِبل a seismograph، مسمّى a "seismogram، "يَعْكسُ الكثافةَ المتغيرةَ للإهتزازاتِ بالرَدّ على حركةَ السطحِ الأرضيِ تحت الآلةِ. مِنْ البياناتِ أبدتْ في seismograms، علماء يُمْكِنُ أَنْ يُقرّروا الوقتَ، المركز، العمق البؤري، ونوع إنتِقاد زلزالِ ويُمْكِنُ أَنْ يُخمّنَ كَمْ الطاقةَ أُصدرتْ




إنّ النوعين العامّينَ مِنْ الإهتزازاتِ أنتجتَا بالزلازلِ موجاتَ سطحيّةَ، التي تُسافرُ على طول سطحِ الأرضَ، وتَعطي شكلاً الموجاتَ، التي تُسافرُ خلال الأرضِ. الموجات السطحيّة لَها الإهتزازاتُ الأقوى عادة وتُلحقُ من المحتمل أغلب الأضرارِ عَملتْ بالزلازلِ.

موجات جسمِ مِنْ نوعين , compressional وقصّ. تَعْبرُ كلتا أنواع داخل الأرضَ مِنْ بؤرةِ زلزالِ إلى النقاطِ البعيدةِ على السطحِ، لكن فقط compressional يُلوّحُ سفراً خلال صميمِ الأرضَ المائعَ. لأن موجاتَ compressional تَسِيرُ بسرعة سرعةً عظيمةً وتَصلَ السطحَ بشكل عادي أولاً، هم يَدْعونَ في أغلب الأحيان "موجات أساسية" أَو ببساطة "بي" موجات. بي موجات تَدْفعُ جزيئاتَ صغيرة جداً مِنْ مادّةِ الأرضِ مباشرة أمامهم أَو تُزيحُ الجزيئاتَ مباشرة وراء خَطَّهم مِنْ السفرِ.

موجات قصِّ لا تُسافرُ كبسرعة خلال القشرةِ وعباءةِ الأرضَ كما تَعملانِ compressional تُلوّحانِ، ولأن يَصِلونَ السطحَ بشكل عادي لاحقاً، هم يَدْعونَ "ثانوية" أَو "إس" موجات. بدلاً مِنْ أنْ يُؤثّرَ على المادّةِ مباشرة وراء أَو قبل خَطّهم مِنْ السفرِ، تُزيحُ موجاتَ القصِّ مادّةً بزاوية قائمة إلى طريقِهم ولذا أحياناً مسمّى الموجاتِ "المستعرضةِ".

إنّ الإشارةَ الأولى لزلزالِ في أغلب الأحيان a هدّة حادّة، يُشيرُ وصولَ موجاتِ compressional. هذه مَتْليةُ بموجاتِ القصَّ وبعد ذلك "لفّة أرضية" سببها الموجاتِ السطحيّةِ. أي جيولوجي الذي كَانَ في فولديز، ألاسكا، أثناء زلزالِ 1964 وَصفَ هذه السلسلةِ: الهزّات الأولى كَانتْ صعبة بما فيه الكفاية لتَوَقُّف a شخص مؤثّر، وموجات إهتزاز كَانتْ ملحوظة فوراً على سطحِ الأرضِ. هذه موجاتِ الإهتزاز إستمرّتْ مَع a تردد طويل بالأحرى، الذي أعطىَ المراقبَ إنطباعَ a شعور متحرج بدلاً مِنْ هزاتِ صعبةِ غير متوقعةِ. بعد حوالي دقيقةَ 1 التي الغزارةَ أَو قوّةَ موجاتِ الإهتزاز زادا في الكثافةِ وحالاتِ الفشل في البناياتِ بالإضافة إلى السطحِ الأرضيِ المجمّدِ بَدأَ بالحَدَث. . . بعد حوالي 3 1/2 الدقائق التي موجات الإهتزاز الحادّة إنتهتْ وناس بَدأوا بالرَدّ كما يُمْكِنُ أَنْ تُتوقّعَ.

شدَّة زلزالِ يُمْكِنُ أَنْ يُبدي في عِدّة طرق. إنّ مقدارَ زلزالِ، أبدىَ عادة بمقياس ريخترِ، مقياس لغزارةِ الموجاتِ الزلزاليةِ. إنّ مقدارَ لحظةَ زلزالِ مقياس لكميةِ الطاقةِ أصدرَ - كمية التي يُمْكِنُ أَنْ تُخَمّنَ مِنْ قراءاتِ seismograph. إنّ الكثافةَ، كما أبدىَ بمِقياسِ Mercalli المُعَدَّل، a إجراء شخصي الذي يَصِفُ كَمْ قوية a صدمة أحسّتْ في a موقع معيّن.

مقياس ريختر، سَمّى على اسم الدّكتورَ تشارلز إف . Richter لمعهد تكنولوجيا كاليفورنيا، أفضل مِقياسِ معروفِ لقياس مقدارِ الزلازلِ. إنّ المِقياسَ لوغاريتميُ لكي a تسجيل 7، على سبيل المثال، يُشيرُ إلى a إضطراب بحركةِ أرضيةِ 10 مراتَ كبيرة كتسجيل مِنْ 6. أي زلزال مِنْ مقدارِ 2 الزلزالُ الأصغرُ شَعرا عادة مِن قِبل الناسِ. زلازل مَع a قيمة Richter مِنْ 6 أَو أكثرِ تَعتبرُ رئيسية عموماً؛ الزلازل العظيمة لَها مقدارُ مِنْ 8 أَو أكثرِ على مقياس ريخترِ.

يُظهرُ مِقياسُ Mercalli المُعَدَّل كثافة تأثيراتِ زلزالِ في a ناحية مُعطية في تَرَاوُح القِيَمِ مِنْ أَنِّي إلى الثّاني عشر. يَغطّي التكيّفُ المستعملُ عموماً الأكثر مدى الكثافةِ مِنْ شرطِ "أنا -- لا أُلبّدُ ماعدا مِن قِبل a قليل جداً تحت الشروطِ المناسبةِ خصوصاً، "إلى" الثّاني عشر -- مجموع ضررِ. خطوط البصرِ والمستوى مشوّه. رَمتْ الأجسامُ صاعدةً إلى الهواءِ." تقييم كثافةِ الزلزالِ يُمْكِنُ أَنْ يُجْعَلَ فقط بعد شاهدِ العيان يَذْكرُ ونَتائِجِ تحقيقاتِ الحقلِ تَدْرسُ وتُترجمُ. الكثافة القصوى واجهتْ في الزلزالِ ألاسكا مِنْ 1964 كَانتْ إكس؛ تَتضرّرُ مِنْ سان فرانسيسكو وزلازل مدريد جديدة وَصلتْ a كثافة قصوى الحادية عشرة.

زلازل المقدارِ الكبيرِ لا تُسبّبُ التأثيراتَ السطحيّةَ الأكثر حدّة بالضرورة. التأثير في a منطقة مُعطية تَعتمدُ إلى a درجة كبيرة على السطحِ المحليِّ وشروطِ السطحِ الثانويةِ الجيولوجيةِ. منطقة وَقعتْ تحتها بالأرضِ الغير مستقرةِ (رمل، طين، أَو مواد غير مَدْعُومة أخرى)، على سبيل المثال، من المحتمل أَنْ يُواجهَ تأثيراتَ ملحوظةَ أكثر بكثيرَ مِنْ منطقةِ بعيدةِ على حد سواء مِنْ مركزِ زلزالِ لكن وَقعَ تحته بالأرضِ القويّةِ مثل الصوانِ. عُموماً، زلازل شرق جبال روكي تُؤثّرُ على a منطقة أكبر كثيرة مِنْ الزلازلِ غرب Rockies.

يَعتمدُ دمارُ زلزالِ على العديد مِنْ العواملِ. بالأضافة إلى مقدارَ والشروطَ الجيولوجيةَ المحليّةَ، تَتضمّنُ هذه العواملِ العمقَ البؤريَ، المسافة مِنْ المركزِ، وتصميم البناياتِ والتراكيبِ الأخرى. يَعتمدُ مدى الضررِ أيضاً على كثافةِ السكانِ والبناءِ في المنطقةِ إهتزّا بالزلزالِ.

زلزال لوما Prieta مِنْ 1989 تَظاهرتْ a تشكيلة واسعة من التأثيراتِ. عَانتْ جبالُ سانتا كروز من الضررِ الصَغيرِ مِنْ الموجاتِ الزلزاليةِ، بالرغم من أنَّ هم كَانوا قريبون من المركزِ. الصميم المركزي لمدينةِ سانتا كروز، حوالي 24 كيلومترَ (15 ميل) بعيداً عن المركزِ، كَانَ تقريباً competely حطّمَ. أكثر مِنْ 80 كيلومتر (50 ميل) بعيداً، عَانتْ مُدنَ سان فرانسيسكو وأوكلند ضرر إنتقائي لكن حادّ، بضمن ذلك خسارةِ أكثر مِنْ 40 روح. الدمار الأعظم حَدثَ في المناطقِ حيث طرقِ ورَفعَ التراكيبَ بُنِيتْ على الأرضِ المستقرّةِ وَقعتْ تحتها بالتُرَبِ الغيرِ المَدْعُومةِ الطليقةِ.

Northridge، كاليفورنيا، زلزال مِنْ 1994 أنتجَ أيضاً a نوع مختلف مِنْ تأثيراتِ، حتى على مسافاتِ فقط بضعة مائة متر. بَعْض البناياتِ إنهارتْ، بينما بنايات مجاورة مِنْ العُمرِ والبناءِ المماثلِ بَقيا واقفاً. بنفس الطريقة، بَعْض قناطرِ الطريق السريعِ إنهارتْ، بينما آخرون في مكان قريب لَمْ.

4
منتدى علوم الأرض / Measuring Earthquakes
« في: يوليو 20, 2005, 01:40:56 مساءاً »
Measuring Earthquakes



The vibrations produced by earthquakes are detected, recorded, and measured by instruments call seismographs. The zig-zag line made by a seismograph, called a "seismogram," reflects the changing intensity of the vibrations by responding to the motion of the ground surface beneath the instrument. From the data expressed in seismograms, scientists can determine the time, the epicenter, the focal depth, and the type of faulting of an earthquake and can estimate how much energy was released.







The two general types of vibrations produced by earthquakes are surface waves, which travel along the Earth's surface, and body waves, which travel through the Earth. Surface waves usually have the strongest vibrations and probably cause most of the damage done by earthquakes.

Body waves are of two types, compressional and shear. Both types pass through the Earth's interior from the focus of an earthquake to distant points on the surface, but only compressional waves travel through the Earth's molten core. Because compressional waves travel at great speeds and ordinarily reach the surface first, they are often called "primary waves" or simply "P" waves. P waves push tiny particles of Earth material directly ahead of them or displace the particles directly behind their line of travel.

Shear waves do not travel as rapidly through the Earth's crust and mantle as do compressional waves, and because they ordinarily reach the surface later, they are called "secondary" or "S" waves. Instead of affecting material directly behind or ahead of their line of travel, shear waves displace material at right angles to their path and therefore sometimes called "transverse" waves.

The first indication of an earthquake is often a sharp thud, signaling the arrival of compressional waves. This is followed by the shear waves and then the "ground roll" caused by the surface waves. A geologist who was at Valdez, Alaska, during the 1964 earthquake described this sequence: The first tremors were hard enough to stop a moving person, and shock waves were immediately noticeable on the surface of the ground. These shock waves continued with a rather long frequency, which gave the observer an impression of a rolling feeling rather than abrupt hard jolts. After about 1 minute the amplitude or strength of the shock waves increased in intensity and failures in buildings as well as the frozen ground surface began to occur ... After about 3 1/2 minutes the severe shock waves ended and people began to react as could be expected.

The severity of an earthquake can be expressed in several ways. The magnitude of an earthquake, usually expressed by the Richter Scale, is a measure of the amplitude of the seismic waves. The moment magnitude of an earthquake is a measure of the amount of energy released - an amount that can be estimated from seismograph readings. The intensity, as expressed by the Modified Mercalli Scale, is a subjective measure that describes how strong a shock was felt at a particular location.

The Richter Scale, named after Dr. Charles F. Richter of the California Institute of Technology, is the best known scale for measuring the magnitude of earthquakes. The scale is logarithmic so that a recording of 7, for example, indicates a disturbance with ground motion 10 times as large as a recording of 6. A quake of magnitude 2 is the smallest quake normally felt by people. Earthquakes with a Richter value of 6 or more are commonly considered major; great earthquakes have magnitude of 8 or more on the Richter scale.

The Modified Mercalli Scale expresses the intensity of an earthquake's effects in a given locality in values ranging from I to XII. The most commonly used adaptation covers the range of intensity from the condition of "I -- Not felt except by a very few under especially favorable conditions," to "XII -- Damage total. Lines of sight and level are distorted. Objects thrown upward into the air." Evaluation of earthquake intensity can be made only after eyewitness reports and results of field investigations are studied and interpreted. The maximum intensity experienced in the Alaska earthquake of 1964 was X; damage from the San Francisco and New Madrid earthquakes reached a maximum intensity of XI.

Earthquakes of large magnitude do not necessarily cause the most intense surface effects. The effect in a given region depends to a large degree on local surface and subsurface geologic conditions. An area underlain by unstable ground (sand, clay, or other unconsolidated materials), for example, is likely to experience much more noticeable effects than an area equally distant from an earthquake's epicenter but underlain by firm ground such as granite. In general, earthquakes east of the Rocky Mountains affect a much larger area than earthquakes west of the Rockies.

An earthquake's destructiveness depends on many factors. In addition to magnitude and the local geologic conditions, these factors include the focal depth, the distance from the epicenter, and the design of buildings and other structures. The extent of damage also depends on the density of population and construction in the area shaken by the quake.

The Loma Prieta earthquake of 1989 demonstrated a wide range of effects. The Santa Cruz mountains suffered little damage from the seismic waves, even though they were close to the epicenter. The central core of the city of Santa Cruz, about 24 kilometers (15 miles) away from the epicenter, was almost competely destroyed. More than 80 kilometers (50 miles) away, the cities of San Francisco and Oakland suffered selective but severe damage, including the loss of more than 40 lives. The greatest destruction occurred in areas where roads and elevated structures were built on stable ground underlain by loose, unconsolidated soils.

The Northridge, California, earthquake of 1994 also produced a wide variety of effects, even over distances of just a few hundred meters. Some buildings collapsed, while adjacent buildings of similar age and construction remained standing. Similarly, some highway spans collapsed, while others nearby did not.



5
منتدى علوم الأرض / rocks
« في: يوليو 19, 2005, 07:08:06 مساءاً »
بسم الله الرحمن الرحيم


                   igneous rock classification

  


صفحات: [1]