Advanced Search

المحرر موضوع: مسألة هندسة صعبة  (زيارة 2086 مرات)

0 الأعضاء و 1 ضيف يشاهدون هذا الموضوع.

يناير 29, 2008, 10:29:37 مساءاً
زيارة 2086 مرات

nasr_78

  • عضو مبتدى

  • *

  • 8
    مشاركة

    • مشاهدة الملف الشخصي
مسألة هندسة صعبة
« في: يناير 29, 2008, 10:29:37 مساءاً »
[ ':110:' مسالة في الهندسة المستوية بالمرفقات ارجو الاهتمام بها لانها مسالة صعبة جدا الملف في المرفقات

يناير 30, 2008, 12:50:39 صباحاً
رد #1

AdvancedHighClassAhmed

  • عضو مبتدى

  • *

  • 6
    مشاركة

    • مشاهدة الملف الشخصي
    • لسة حسأل عليه
مسألة هندسة صعبة
« رد #1 في: يناير 30, 2008, 12:50:39 صباحاً »
انا مش فاهم صيغة السؤال

يعنى إيه المجموع = مقدار ثابت؟؟

اظن انك مش عايز في الإجابة متغير

طيب...ليه تقول ان هناك متغير اساسا فى المسألة؟
هندسة عين شمس


فبراير 02, 2008, 05:43:46 مساءاً
رد #2

nasr_78

  • عضو مبتدى

  • *

  • 8
    مشاركة

    • مشاهدة الملف الشخصي
مسألة هندسة صعبة
« رد #2 في: فبراير 02, 2008, 05:43:46 مساءاً »
اولا ':110:' للصديق AdvancedHighClassAhmed علي الاهتمام
المقصود ان مجموع الاعمدة لا يتغير مهما تغير وضع المستقيم م ن مع كونه دائما يمر بنقطة تقاطع المتوسطات هـ ':111:'

فبراير 02, 2008, 10:09:18 مساءاً
رد #3

AdvancedHighClassAhmed

  • عضو مبتدى

  • *

  • 6
    مشاركة

    • مشاهدة الملف الشخصي
    • لسة حسأل عليه
مسألة هندسة صعبة
« رد #3 في: فبراير 02, 2008, 10:09:18 مساءاً »
انا فى خدمتك يا اخى

بعد المراجعة: انا بجد حاسس ان توجد حاجة لا علم لى بها

يعنى مثلا

هل حنستخدم الانتجراشن هنا؟

لو حد عرف يقول عشان نفتح طريق للمسألة

دا انا حتى لسة إعدادى هندسة ':blush:'
هندسة عين شمس


فبراير 13, 2008, 03:14:25 مساءاً
رد #4

zamdal

  • عضو مبتدى

  • *

  • 6
    مشاركة

    • مشاهدة الملف الشخصي
مسألة هندسة صعبة
« رد #4 في: فبراير 13, 2008, 03:14:25 مساءاً »
بس شو معنى انه هـ نقطة تقاطع متوسطات
و فوق كل ذي علم عليم

فبراير 22, 2008, 09:13:16 مساءاً
رد #5

nasr_78

  • عضو مبتدى

  • *

  • 8
    مشاركة

    • مشاهدة الملف الشخصي
مسألة هندسة صعبة
« رد #5 في: فبراير 22, 2008, 09:13:16 مساءاً »
اخي الكريم zamdal المتوسط هو قطعة مستقيمه مرسومة من رأس المثلث الى منتصف الضلع المقابل و من ثم فان لكل مثلث ثلاثة متوسطات تتقاطع جميعها في نقطة واحدة
في الرسمة الخاصة بالسؤال هـ  هي  نقطة تقاطع متوسطات
و مجموع اطوال الاعمدة لا يتغير مهما تغير وضع المستقيم م ن مع كونه دائما يمر بنقطة تقاطع المتوسطات هـ والله تعالى اعلى واعلم  ':111:'

مايو 05, 2009, 02:53:47 مساءاً
رد #6

Yacoubian

  • عضو متقدم

  • ****

  • 726
    مشاركة

  • مشرف الرياضيات

    • مشاهدة الملف الشخصي
مسألة هندسة صعبة
« رد #6 في: مايو 05, 2009, 02:53:47 مساءاً »
ْْالأخ nasr_78 المحترم ... الإخوة الأعضاء المحترمين ... بعد التحية والسلام ...

اسمح لي أن أبدأ بنص المسألة الواردة في الملف مع الرسم التوضيحي أعلاه :

أ ب جـ مثلث متساوي الأضلاع ، أ د متوسط ، هـ نقطة تقاطع المتوسطات ، م ن مستقيم كل من ب م ، أ ل ، جـ ن أعمدة مقامة من رؤوس المثلث على المستقيم م ن ، أثبت أن مجموع أطوال هذه الأعمدة يساوي مقداراً ثابتاً .

بالتمعن جيداً بالمسألة ستجد أن الطلب الصحيح هو مغاير لطلب المسألة عندك وسيكون : أثبت أن طول العمود الأطول يساوي طولي العمودين الأصغرين مهما تغير وضع المستقيم م ن .

 لاحظ معي أن انطباق المستقيم م ن على المتوسط النازل من جـ على سبيل المثال ( وهو كما تعلم المنصف والعمود في المثلث المتساوي الأضلاع ) سيجعل :

 ل [ ب م ] = ل [ أ ل ] = نصف طول ضلع المثلث ،  وتنطبق النقطة ن على جـ أي أن : ل [ جـ ن ] = 0

حالة خاصة ثانية ستواجهنا عندما يوازي المستقيم م ن لأضلاع المثلث ، فإذا كان م ن // ب جـ فإن طول الارتفاع الأكبر أ ل يساوي إلى مجموع طولي الارتفاعين ب م ، جـ ن ويساوي إلى ثلثي الارتفاع .

أي أن : ل [ أ ل ] = ل [ ب م ] + ل [ جـ ن ] .

 وللبرهان على ذلك قمت بالرسم الهندسي بالامكانيات المتاحة ، ولنبدأ بحساب الأطوال AJ ، BE ، CI  بدلالة الزاوية @ :

ل [ AJ ] = ل [ AG ] . جتا ( 30 - @ )   .......  ( 1 )

ل [ BE ] = ل [ BG ] . جا ( @ )  ....... ( 2 )

ل [ CI ] = ل [ CG ] . جتا ( 30 + @ )  ....... ( 3 )

( 1 ) = ( 2 ) + ( 3 )

ل [ AG ] . جتا ( 30 - @ ) = ل [ BG ] . جا ( @ ) + ل [ CG ] . جتا ( 30 + @ )

لكن : ل [ AG ] = ل [ BG ] = ل [ CG ]

جتا ( 30 - @ ) = جا ( @ ) + جتا ( 30 + @ )

جتا( 30 ) . جتا( @ ) + جا( 30 ) . جا( @ ) = جا( @ ) + جتا( 30 ) . جتا( @ ) - جا( 30 ) . جا( @ )

بالاختصار والتجميع :

جا( 30 ) . جا( @ ) = جا( @ ) - جا( 30 ) . جا( @ )

2 جا( 30 ) . جا( @ ) = جا( @ ) .

2 × 1/2 . جا( @ ) = جا( @ )      ===>          جا( @ ) = جا( @ )      مهما تكن الزاوية @ وهو المطلوب .

مع تمنياتي للطلبة والطالبات النجاح والتوفيق .

أخوكم بسام
شكراً لكم على هذا المنتدى العلمي الرائد ...
أخوكم : وانيس بسام يعقوبيان
حلب - سوريا

يونيو 18, 2009, 04:36:01 مساءاً
رد #7

التهامى

  • عضو مبتدى

  • *

  • 20
    مشاركة

    • مشاهدة الملف الشخصي
مسألة هندسة صعبة
« رد #7 في: يونيو 18, 2009, 04:36:01 مساءاً »
':203:'
المسيرى ابتسامة النصر لابد لها من مجهود حتى تظهر

يونيو 18, 2009, 08:13:24 مساءاً
رد #8

Yacoubian

  • عضو متقدم

  • ****

  • 726
    مشاركة

  • مشرف الرياضيات

    • مشاهدة الملف الشخصي
مسألة هندسة صعبة
« رد #8 في: يونيو 18, 2009, 08:13:24 مساءاً »

أخي التهامي المحترم ... مساء السعادة ...

أتمنى أن تبقى الإبتسامة على وجوه المجتهدين أمثالك ، شعاعها من نور العلم اللانهائي ، بارك الله بك وإلى نجاحات قادمة إن شاء الله .

أخوك بسام
شكراً لكم على هذا المنتدى العلمي الرائد ...
أخوكم : وانيس بسام يعقوبيان
حلب - سوريا