Advanced Search

المحرر موضوع: الخطوط التقاربية  (زيارة 506 مرات)

0 الأعضاء و 1 ضيف يشاهدون هذا الموضوع.

مايو 03, 2002, 08:17:56 مساءاً
زيارة 506 مرات

دالة

  • عضو مشارك

  • ***

  • 476
    مشاركة

  • عضو مجلس الرياضيات

    • مشاهدة الملف الشخصي
    • http://
الخطوط التقاربية
« في: مايو 03, 2002, 08:17:56 مساءاً »
السلام عليكم ..

خطوات تحديد الخطوط التقاربيه ..

1) جميع دوال كثيرات الحدود ليس لها خطوط تقاربية .
2) اذا كانت الدالة كسرية فإن لها خطوط تقاربيه تتحدد حسب العلاقه بين درجتي كلاً من بسط ومقام الدالة كالتالي :
أ - درجة البسط = درجة المقام :
- الدالة لها خط تقاربي رأسي هو صفر المقام ومعادلته : س = أ لأن : نهـــــــــا د(س) = + ، - مالانهايه عندما س تقترب من أ .
- الداله لها خط تقاربي أفقي نحصل عليه من : ص = أ = معامل أكبر قوة في البسط / معامل أكبر قوة في المقام ، لأن نهـــــــــا د(س) = + ، - أ عندما س تقترب من + ، - ما لا نهايه .
- الداله ليس لها خط تقاربي مائل .

ب – درحة البسط < درجة المقام :
- الدالة لها خط تقاربي رأسي هو صفر المقام ومعادلته : س = أ لأن : نهـــــــــا د(س) = + ، - مالانهايه عندما س تقترب من أ .
- الداله لها خط تقاربي أفقي هو دائماً ص = صفر ، لأن نهـــــــــا د(س) = صفر عندما س تقترب من + ، - ما لا نهايه .
- الداله ليس لها خط تقاربي مائل .

جـ - درجة البسط > درجة المقام :
- الدالة لها خط تقاربي رأسي هو صفر المقام ومعادلته : س = أ لأن : نهـــــــــا د(س) = + ، - مالانهايه عندما س تقترب من أ .
- الداله ليس لها خط تقاربي أفقي .
- الداله لها خط تقاربي مائل ، لإيجاده نجري عملية القسمة المطولة ثم نكتب الداله على الصورة :

الدالة = خارج القسمة + ( الباقي / المقسوم عليه ) ...... يجب ملاحظة أنه عندما : س تقترب من + ، - مالانهايه ، فإن : الباقي / المقسوم عليه يقترب من الصفر
بالتالي الصورة النهائية للدالة تكون كالتالي :
الدالة = ص = خارج القسمة .

--------------------------------------
مهم جداً ان يكون من يحل المسأله على قدر من الوعي بكل كلمه يكتبها ، فالحل مرتبط تماماً بالرسم ..
دعواتي للجميع بالتوفيق '<img'>
" اللهم علمنا ما ينفعنا ، وانفعنا بما علمتنا ، وزدنا علما فإنه لا علم إلاّ ما علمتنا ، إنك أنت العليم الحكيم "